Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(9): R418-R434, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714175

RESUMO

Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Recuperação e Remediação Ambiental/métodos , Biodiversidade , Mudança Climática
2.
Ecol Appl ; 33(4): e2825, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843150

RESUMO

Foundation species like the eastern oyster (Crassostrea virginica) create complex habitats for organisms across multiple trophic levels. Historic declines in oyster abundance have prompted decades of restoration efforts. However, it remains unclear how long it takes for restored reefs to resemble the trophic complexity of natural reefs. We used a space-for-time approach to examine community succession of restored reefs ranging in age from 3 to 22 years old in coastal North Carolina, surveying both free-living taxa and parasite communities and comparing them to natural reefs that are decades old. Trophically transmitted parasites can serve as valuable biodiversity surrogates, sometimes providing greater information about a system or question than their free-living counterparts. We found that the diversity of free-living taxa was highly variable and did not differ among new (<10 years), old (20 years), and natural reefs. Conversely, parasite diversity increased with elapsed time after restoration, and parasite communities in older restored reefs resembled those found in natural reefs. Our study also revealed that oyster toadfish (Opsanus tau) act as a key host species capable of facilitating parasite transmission and trophic ascent in oyster reef food webs. Overall, our results suggest that trophic complexity in restored oyster reefs requires at least 8 years to resemble that found in natural reefs. This work adds to a growing body of evidence demonstrating how parasites can serve as biodiversity surrogates, proxies for the presence of additional taxa that are often difficult or impractical to sample. Given the multiplicity of links formed with their hosts, parasites offer a powerful tool for quantifying diversity and trophic complexity in environmental monitoring studies.


Assuntos
Crassostrea , Parasitos , Animais , Ecossistema , Cadeia Alimentar , Biodiversidade
3.
PLoS One ; 17(10): e0273556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227958

RESUMO

Major storms can alter coastal ecosystems in several direct and indirect ways including habitat destruction, stormwater-related water quality degradation, and organism mortality. From 2010-2020, ten tropical cyclones impacted coastal North Carolina, providing an opportunity to explore ecosystem responses across multiple storms. Using monthly trawl and contemporaneous seagrass surveys conducted in Back Sound, NC, we evaluated how cyclones may affect the nursery role of shallow-water biogenic habitats by examining seagrass-associated fish responses within a temperate-subtropical estuary. We employed a general before-after-control-impact approach using trawls conducted prior (before) and subsequent (after) to storm arrival and years either without (control) or with (impact) storms. We examined whether effects were apparent over short (within ~three weeks of impact) and seasonal (May-October) timescales, as well as if the magnitude of storm-related shifts varied as a function of storm intensity. Our findings suggest that the ability of these shallow-water habitats to support juvenile fishes was not dramatically altered by hurricanes. The resilience exhibited by fishes was likely underpinned by the relative persistence of the seagrass habitat, which appeared principally undamaged by storms based upon review of available-albeit limited seagrass surveys. Increasing cyclone intensity, however, was correlated with greater declines in catch and may potentially underlie the emigration and return rate of fish after cyclones. Whether estuarine fishes will continue to be resilient to acute storm impacts despite chronic environmental degradation and predicted increases major tropical cyclone frequency and intensity remains a pressing question.


Assuntos
Tempestades Ciclônicas , Animais , Ecossistema , Estuários , Peixes/fisiologia , North Carolina
4.
Integr Environ Assess Manag ; 18(1): 82-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33991025

RESUMO

A growing suite of research has demonstrated that nature-based shoreline stabilization methods can increase resilience of coastal ecosystems by improving their capacity to return to predisturbance states. Previous work suggests that during hurricanes, living shorelines promote vertical accretion and experience less damage than traditional shoreline stabilization alternatives. Nevertheless, there is limited research looking at the impacts of major storm events on living shorelines and most studies have investigated a small number of sites. This study used in situ real-time kinematic (RTK)-GPS surveys to quantify the resilience (via the lateral change in shore position) of 17 living shoreline sites before and after a Category 1 hurricane event (Hurricane Florence, 2018). By doing so, this study seeks to understand the capacity of living shorelines (marsh with seaward breakwater or sill) to provide storm protection as compared to unaltered natural fringing salt marshes. After Hurricane Florence, living shorelines on average experienced significantly less lateral erosion compared to unprotected control segments (shoreline change rates of 0.015 and -0.31 m year-1 , respectively). This study also explores how environmental siting variables (i.e., scarp presence, fetch, and bottom sediment) and sill design variables (i.e., sill material, width, and height) influence short- and long-term erosion. living shorelines were found to reduce erosion of fringing marsh edge among projects with a range of installation ages, structural materials, sill widths, and sill heights, and they were able to provide protection from erosion across a range of fetch, scarp, and bottom sediment conditions. Living shoreline siting and sill design may be suitable for broader environmental conditions than previously known. This study shows that living shorelines can increase resilience by reducing erosion of fringing salt marshes, promoting lateral building up of shoreline zones during short-term disturbance events, and from their long-term presence. Integr Environ Assess Manag 2022;18:82-98. © 2021 SETAC.


Assuntos
Ecossistema , Áreas Alagadas
6.
Ecol Appl ; 32(2): e2506, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870355

RESUMO

The detrimental ecological impacts of engineered shoreline protection methods (e.g., seawalls) and the need to protect the coastal zone have prompted calls for greater use of natural and nature-based infrastructure (NNBI). To balance competing needs of structural stability and ecological functioning, managers require assessments of NNBI designs and materials for differing environmental settings (e.g., among wave-energy regimes). To examine the effects of setting and oyster-based NNBI design on the provision of shoreline protection, we constructed reefs from two substrates: a novel, biodegradable material (Oyster Catcher, OC) and traditional oyster shell bags (SB) on low- and high-energy eroding salt marsh shorelines, designated based on fetch and boat wake exposure. Both reef types buffered marsh elevation change on the high-energy shoreline relative to unaltered controls, but only SB reefs were able to do so on the low-energy shoreline. Additionally, both shorelines experienced high ambient rates of retreat and declines in marsh vegetation shoot density. Although constructed reefs did not mitigate marsh retreat on the low-energy shoreline, novel OC reefs significantly reduced retreat relative to SB reefs and control sites (no reefs) on the high-energy shoreline. Those SB reefs were severely damaged by storm events, increasing their areal footprints at the expense of vertical relief. Conversely, OC reefs on both shorelines exhibited steady oyster recruitment and growth and hosted higher densities of larger oysters. To successfully provide shoreline stabilization benefits, oyster-based NNBI must be structurally stable and able to promote sustained oyster recruitment and growth. Our results indicate that deliberate decisions regarding NNBI substrate, siting, and configuration can produce resilient reefs, which reduce rates of erosion and, in some cases, enhance vertical accretion along salt marsh edges. The growth trajectory, structural stability, and co-benefit provisioning of OC reefs demonstrate the potential of alternative restoration substrates to provide valuable oyster habitat along threatened marsh shorelines.


Assuntos
Ostreidae , Áreas Alagadas , Animais , Ecossistema , Hidrodinâmica
7.
J Environ Manage ; 296: 113178, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34225043

RESUMO

Formed at the confluence of marine and fresh waters, estuaries experience both the seaside pressures of rising sea levels and increasing storm severity, and watershed and precipitation changes that are shifting the quality and quantity of freshwater and sediments delivered from upstream sources. Boating, shoreline hardening, harvesting pressure, and other signatures of human activity are also increasing as populations swell in coastal regions. Given this shifting landscape of pressures, the factors most threatening to estuary health and stability are often uncertain. To identify the greatest contemporary threats to coastal wetlands and oyster reefs across the southeastern United States (Mississippi to North Carolina), we summarized recent population growth and land-cover change and surveyed estuarine management and science experts. From 1996 to 2019, human population growth in the region varied from a 17% decrease to a 171% increase (mean = +43%) with only 5 of the 72 SE US counties losing population, and nearly half growing by more than 40%. Individual counties experienced between 999 and 19,253 km2 of new development (mean: 5725 km2), with 1-5% (mean: 2.6%) of undeveloped lands undergoing development over this period across the region. Correspondingly, our survey of 169 coastal experts highlighted development, shoreline hardening, and upstream modifications to freshwater flow as the most important local threats facing coastal wetlands. Similarly, experts identified development, upstream modifications to freshwater flow, and overharvesting as the most important local threats to oyster reefs. With regards to global threats, experts categorized sea level rise as the most pressing to wetlands, and acidification and precipitation changes as the most pressing to oyster reefs. Survey respondents further identified that more research, driven by collaboration among scientists, engineers, industry professionals, and managers, is needed to assess how precipitation changes, shoreline hardening, and sea level rise are affecting coastal ecosystem stability and function. Due to the profound role of humans in shaping estuarine health, this work highlights that engaging property owners, recreators, and municipalities to implement strategies to improve estuarine health will be vital for sustaining coastal systems in the face of global change.


Assuntos
Ostreidae , Áreas Alagadas , Animais , Ecossistema , Estuários , Humanos , North Carolina
8.
Sustainability ; 12(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33841922

RESUMO

In the United States, extensive investments have been made to restore the ecological function and services of coastal marine habitats. Despite a growing body of science supporting coastal restoration, few studies have addressed the suite of societally enabling conditions that helped facilitate successful restoration and recovery efforts that occurred at meaningful ecological (i.e., ecosystem) scales, and where restoration efforts were sustained for longer (i.e., several years to decades) periods. Here, we examined three case studies involving large-scale and long-term restoration efforts including the seagrass restoration effort in Tampa Bay, Florida, the oyster restoration effort in the Chesapeake Bay in Maryland and Virginia, and the tidal marsh restoration effort in San Francisco Bay, California. The ecological systems and the specifics of the ecological restoration were not the focus of our study. Rather, we focused on the underlying social and political contexts of each case study and found common themes of the factors of restoration which appear to be important for maintaining support for large-scale restoration efforts. Four critical elements for sustaining public and/or political support for large-scale restoration include: (1) resources should be invested in building public support prior to significant investments into ecological restoration; (2) building political support provides a level of significance to the recovery planning efforts and creates motivation to set and achieve meaningful recovery goals; (3) recovery plans need to be science-based with clear, measurable goals that resonate with the public; and (4) the accountability of progress toward reaching goals needs to be communicated frequently and in a way that the general public comprehends. These conclusions may help other communities move away from repetitive, single, and seemingly unconnected restoration projects towards more large-scale, bigger impact, and coordinated restoration efforts.

9.
Front Mar Sci ; 6: 511, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32133361

RESUMO

Coastal ecosystems are under pressure from a vast array of anthropogenic stressors, including development and climate change, resulting in significant habitat losses globally Conservation policies are often implemented with the intent of reducing habitat loss. However, losses already incurred will require restoration if ecosystem functions and services are to be recovered. The United States has a long history of wetland loss and recognizes that averting loss requires a multi-pronged approach including mitigation for regulated activities and non-mitigation (voluntary herein) restoration. The 1989 "No Net Loss" (NNL) policy stated the Federal government's intent that losses of wetlands would be offset by at least as many gains of wetlands. However, coastal wetlands losses result from both regulated and non-regulated activities. We examined the effectiveness of Federally funded, voluntary restoration efforts in helping avert losses of coastal wetlands by assessing: (1) What are the current and past trends in coastal wetland change in the U.S.?; and (2) How much and where are voluntary restoration efforts occurring? First, we calculated palustrine and estuarine wetland change in U.S. coastal shoreline counties using data from NOAA's Coastal Change Analysis Program, which integrates both types of potential losses and gains. We then synthesized available data on Federally funded, voluntary restoration of coastal wetlands. We found that from 1996 to 2010, the U.S. lost 139,552 acres (~565 km2) of estuarine wetlands (2.5% of 1996 area) and 336,922 acres (~1,363 km2) of palustrine wetlands (1.4%). From 2006 to 2015, restoration of 145,442 acres (~589 km2) of estuarine wetlands and 154,772 acres (~626 km2) of palustrine wetlands occurred. Further, wetland losses and restoration were not always geographically aligned, resulting in local and regional "winners" and "losers." While these restoration efforts have been considerable, restoration and mitigation collectively have not been able to keep pace with wetland losses; thus, reversing this trend will likely require greater investment in coastal habitat conservation and restoration efforts. We further conclude that "area restored," the most prevalent metric used to assess progress, is inadequate, as it does not necessarily equate to restoration of functions. Assessing the effectiveness of wetland restoration not just in the U.S., but globally, will require allocation of sufficient funding for long-term monitoring of restored wetland functions, as well as implementation of standardized methods for monitoring data collection, synthesis, interpretation, and application.

10.
Ecol Appl ; 28(4): 871-877, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29702741

RESUMO

Nature-based solutions, such as living shorelines, have the potential to restore critical ecosystems, enhance coastal sustainability, and increase resilience to natural disasters; however, their efficacy during storm events compared to traditional hardened shorelines is largely untested. This is a major impediment to their implementation and promotion to policy-makers and homeowners. To address this knowledge gap, we evaluated rock sill living shorelines as compared to natural marshes and hardened shorelines (i.e., bulkheads) in North Carolina, USA for changes in surface elevation, Spartina alterniflora stem density, and structural damage from 2015 to 2017, including before and after Hurricane Matthew (2016). Our results show that living shorelines exhibited better resistance to landward erosion during Hurricane Matthew than bulkheads and natural marshes. Additionally, living shorelines were more resilient than hardened shorelines, as they maintained landward elevation over the two-year study period without requiring any repair. Finally, rock sill living shorelines were able to enhance S. alterniflora stem densities over time when compared to natural marshes. Our results suggest that living shorelines have the potential to improve coastal resilience while supporting important coastal ecosystems.


Assuntos
Tempestades Ciclônicas , Áreas Alagadas , Ambiente Construído , North Carolina , Poaceae
11.
J Anim Ecol ; 86(6): 1394-1403, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28833089

RESUMO

Quantifying the response of mobile consumers to changes in habitat availability is essential for determining the degree to which population-level productivity is habitat limited rather than regulated by other, potentially density-independent factors. Over landscape scales, this can be explored by monitoring changes in density and foraging as habitat availability varies. As habitat availability increases, densities may: (1) decrease (unit-area production decreases; weak habitat limitation); (2) remain stable (unit-area production remains stable; habitat limitation) or (3) increase (unit-area production increases; strong habitat limitation). We tested the response of mobile estuarine consumers over 5 months to changes in habitat availability in situ by comparing densities and feeding rates on artificial reefs that were or were not adjacent to neighbouring artificial reefs or nearby natural reefs. Using either constructed or natural reefs to manipulate habitat availability, we documented threefold density decreases among juvenile stone crabs as habitat increased (i.e. weak habitat imitation). However, for adult stone crabs, density remained stable across treatments, demonstrating that habitat limitation presents a bottleneck in this species' later life history. Oyster toadfish densities also did not change with increasing habitat availability (i.e. habitat limitation), but densities of other cryptic fishes decreased as habitat availability increased (i.e. weak limitation). Feeding and abundance data suggested that some mobile fishes experience habitat limitation, or, potentially in one case, strong limitation across our habitat manipulations. These findings of significant, community-level habitat limitation provide insight into how global declines in structurally complex estuarine habitats may have reduced the fishery production of coastal ecosystems.


Assuntos
Biomassa , Crustáceos/fisiologia , Ecossistema , Peixes/fisiologia , Animais , Crustáceos/crescimento & desenvolvimento , Comportamento Alimentar , Peixes/crescimento & desenvolvimento , North Carolina , Densidade Demográfica , Especificidade da Espécie
12.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747477

RESUMO

Carbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs' role as sources (+) or sinks (-) of atmospheric CO2 While CO2 release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO2 drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO2 (7.1 ± 1.2 MgC ha-1 yr-1 (µ ± s.e.)) resulting from predominantly carbonate deposition, whereas shallow subtidal reefs (-1.0 ± 0.4 MgC ha-1 yr-1) and saltmarsh-fringing reefs (-1.3 ± 0.4 MgC ha-1 yr-1) were dominated by organic-carbon-rich sediments and functioned as net carbon sinks (on par with vegetated coastal habitats). These landscape-level differences reflect gradients in shellfish growth, survivorship and shell bioerosion. Notably, down-core carbon concentrations in 100- to 4000-year-old reefs mirrored experimental-reef data, suggesting our results are relevant over centennial to millennial scales, although we note that these natural reefs appeared to function as slight carbon sources (0.5 ± 0.3 MgC ha-1 yr-1). Globally, the historical mining of the top metre of shellfish reefs may have reintroduced more than 400 000 000 Mg of organic carbon into estuaries. Importantly, reef formation and destruction do not have reciprocal, counterbalancing impacts on atmospheric CO2 since excavated organic material may be remineralized while shell may experience continued preservation through reburial. Thus, protection of existing reefs could be considered as one component of climate mitigation programmes focused on the coastal zone.


Assuntos
Sequestro de Carbono , Ecossistema , Ostreidae , Animais , Carbono/química , Dióxido de Carbono/química
13.
Ecol Appl ; 26(1): 249-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27039523

RESUMO

Coastal ecosystems provide numerous services, such as nutrient cycling, climate change amelioration, and habitat provision for commercially valuable organisms. Ecosystem functions and processes are modified by human activities locally and globally, with degradation of coastal ecosystems by development and climate change occurring at unprecedented rates. The demand for coastal defense strategies against storms and sea-level rise has increased with human population growth and development along coastlines world-wide, even while that population growth has reduced natural buffering of shorelines. Shoreline hardening, a common coastal defense strategy that includes the use of seawalls and bulkheads (vertical walls constructed of concrete, wood, vinyl, or steel), is resulting in a "coastal squeeze" on estuarine habitats. In contrast to hardening, living shorelines, which range from vegetation plantings to a combination of hard structures and plantings, can be deployed to restore or enhance multiple ecosystem services normally delivered by naturally vegetated shores. Although hundreds of living shoreline projects have been implemented in the United States alone, few studies have evaluated their effectiveness in sustaining or enhancing ecosystem services relative to naturally vegetated shorelines and hardened shorelines. We quantified the effectiveness of (1) sills with landward marsh (a type of living shoreline that combines marsh plantings with an offshore low-profile breakwater), (2) natural salt marsh shorelines (control marshes), and (3) unvegetated bulkheaded shores in providing habitat for fish and crustaceans (nekton). Sills supported higher abundances and species diversity of fishes than unvegetated habitat adjacent to bulkheads, and even control marshes. Sills also supported higher cover of filter-feeding bivalves (a food resource and refuge habitat for nekton) than bulkheads or control marshes. These ecosystem-service enhancements were detected on shores with sills three or more years after construction, but not before. Sills provide added structure and may provide better refuges from predation and greater opportunity to use available food resources for nekton than unvegetated bulkheaded shores or control marshes. Our study shows that unlike shoreline hardening, living shorelines can enhance some ecosystem services provided by marshes, such as provision of nursery habitat.


Assuntos
Conservação dos Recursos Naturais , Crustáceos/crescimento & desenvolvimento , Estuários , Peixes/crescimento & desenvolvimento , Áreas Alagadas , Animais , Biomassa , Atividades Humanas
14.
Bioscience ; 66(9): 763-773, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533564

RESUMO

Protecting coastal communities has become increasingly important as their populations grow, resulting in increased demand for engineered shore protection and hardening of over 50% of many urban shorelines. Shoreline hardening is recognized to reduce ecosystem services that coastal populations rely on, but the amount of hardened coastline continues to grow in many ecologically important coastal regions. Therefore, to inform future management decisions, we conducted a meta-analysis of studies comparing the ecosystem services of biodiversity (richness or diversity) and habitat provisioning (organism abundance) along shorelines with versus without engineered-shore structures. Seawalls supported 23% lower biodiversity and 45% fewer organisms than natural shorelines. In contrast, biodiversity and abundance supported by riprap or breakwater shorelines were not different from natural shorelines; however, effect sizes were highly heterogeneous across organism groups and studies. As coastal development increases, the type and location of shoreline hardening could greatly affect the habitat value and functioning of nearshore ecosystems.

15.
Ecology ; 94(12): 2709-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24597218

RESUMO

Ecologists have long been interested in identifying and testing factors that drive top-down or bottom-up regulation of communities. Most studies have focused on factors that directly exert top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also recently been explored. Previous field studies separately revealed that fiddler crabs, which burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our knowledge, no studies to date have explored how nontrophic facilitators can mediate top-down effects (i.e., grazing) on primary-producer biomass. We conducted a field study testing whether fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental plots lacking periwinkles and fiddler crabs, periwinkles alone exerted top-down control of total aboveground biomass and net growth of S. alterniflora. When fiddler crabs were included, they counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels were greater and S. alterniflora belowground biomass was lower where fiddler crabs were present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent loss of biogenically structured marsh habitat and its ecosystem services.


Assuntos
Braquiúros/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Poaceae/crescimento & desenvolvimento , Vinca/fisiologia , Animais , Conservação dos Recursos Naturais , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...